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NOTATION

T Total thrust

Q Tangential force in non-viscous flow

P Total power

P* Pitch

z Number of blades of one of the propellers

D = 2R Diameter

x = r/R Non-dimensional radial coordinate

d Distance of the two propellers

Contraction ratio

vs  Ship speed

w Effective wake factor

w0  Integrated effective wake factor

v Vs(1-w) Local velocity of advance

t Thrust deduction factor

to Integrated thrust deduction factor

Wa Axial component of the induced velocity

W wt  Tangential component of the induced velocity

n revolutions per second

is: Vs/tnD Advance ratio

Angular velocity

T
CT 2 Thrust loading coefficient in non-viscous flow

£R2rvs
2
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Cp - P Power loading coefficient in non-viscous flow

IR2 v3

2 s

CL Lift, coefficient of any section

£ CD/CL Drag-lift coefficient of any section

TBound circulation of one blade

G = zT/i7D vs  Non-dimensional bound circulation of one of
the propellers

(PC) Propulsive coefficient

f Average factor

g Distance factor

I Induction factor

A bar meazns an average value taken either
circumferentially or radially

Indices:

1 Front propeller

2 Rear propeller

s Self induction

i Interference induction

h Hub



INTRODUCTION

Known theorics of a contra-rotat ing propeller are either
restricted to uniform inflow (1)* or include arbitrary assumptions
concerning both the applicability of the Goldstein function and
the orientation of the re3ultant induced velocity relative to the
free vortex sheets (Z, 3). These assumptions are avoided in the
following considerations which make use of the so-called induction
factors of vortex sheets°

A criterion for optimum flow, expressed in terms of the
direction of the free vortex sheets, Is obtained from first order
crnsiderations. This criterion leads to a non-linear integral
equation for. the optimum circulation or, approximately, to a set
of non-linear algebraic equations for the Fourier coefficients of
the circulation. For uniform inflow, the free vortex sheets
become of a true helical shape and the equations for the
circulation reduce to a linear system.

A design method, which follows from the considerations, is
outlined taking approximately into account the effects arising
from the difference of the wake at the propeller disc3 and from
the contraction of the rice between them.

Finally, the optimum circulation obtained by Theodorsen for
uniform inflow by means of an electrical analogy (1) is compared
with the result from the developed relations.

* The numbers in parentheses refer to the list of references on
page 22
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GENERAL CONSIDERAThCNS

The flow at either propeller of a contra-rotating pair
arises both from self induction and from interference induction
(Figure 1).

At the front propeller, the interference cause- an increase
of the axial component of the relative velocity. There is no
interference effect on the tangential component, as follows from
Stokes' law.

At the rear propeller, both the axial and the tangential
component of the 'elative velocity are increased by interference.

The following assumptions are made when establishing
expressions for the flow components and for the generated forces:

(1) The shape of the vortex sheets is determined by the
relative flow at the disc. This assumption requires bot, that
the propellers are moderately loaded and that the wake do6i not
appreciably change in the axial direction.

The first holds sufficiently if secoil and higher powers
of the induced velocity may be neglected, thl. second if the
frictional part of the wake is predominan,.

(2) The self and mutual interference of he free vortex
sheets may be neglected.

(3) The bladAs may be replaced by lifting lines and
corrections for lifting surface effects may be iiit.' L ced
afterwards.

(4) The induced velocity components may be cunsiCered
time averages, i.e., oscillations in both angle of attacL and
magnitude of velocity are not taken into account.

(5) The bound circulation may be represented by a Fourior
sine series.

(6) The propellers hai3 an equal number of blades. This
latter assumption can be easi'ly removed if deemed necessary.
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COMPONE:NTS OF TITE RELATIVE VELOCTTY AND OF THE FORCES

From Figure 1, the components of the relative velocity at
a blade element are for the front screw:

axial = v + (was)i * (wai)I

tangential = r - (Wts) 1

and for the rear screw:

axial = v + (w as)2 + (wai)2

tangential =6r - , -(wti) 2

The interference velocities are considered circumferential averages,
from assumption 4. These averages are obtained when multiplying
the maximum value of the respective induced velocity component,
which is induced at a bound vortex, by its average factor f and
when introducing a second factor g to represent the change of the
average in the vicinity of the disc, Correspondingly, the
interference velocities may be expressed by the self-induced
velocities as follows:

(Wai)l (Was) 2 (fa) 2 [1 - a)21 (W-s)2 [1- (ga) 2 ]

(;¢tl~ =0

S(Wai)2 :(W as)l ( f a ) l [1 + (ga)l] = (was)l [I (ga)l]

(wti)2 :2 (wt) 1 (ft0l [l f (gt)l=-2 (7st- ), 1  t (gt)l11

The factor 2 within the last relation arises from the discontinuity
of the tangential component of the self induced velocity.

To approximately determine the factors ga each propeller is replaced
by a uniformly loaded sink disc and

(ga)l I (ga)2

is assumed, i.e., symmetry of the gradiont of the axially induced
flow relative to the disc is assumed. From the known potential
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of a sink disc it develops that

I 1 5 1. 35 1 .]

1ga - cos - 2- 4 P2 t 1 6 P4 -i P6 
+ 

- .]

+ sin L 1 , 5 1
[i] ( sinb 4P2- T 6 P4 + T2-8 b8 P6 - + "1

if b > 1 and

ga 1 - cos I - b P2 * b P4 - b5 P6 : s" ]

sin [pl I b P'1 + b i3 p4 -
I b5 1 +

L 2 2 4 6 6

if b<1.

The functions Pn are the Legendre polynomials of the argument

cos 9 = d/R

b

where

b = x 2 - (d/R) 2

and where d represents the axial distance of the two propellers.
The prime means the derivative of Pn relative to 9. The factor
ga is represented on Figure 2 as a function of x and d/R. The

diagram indicates that the change of the axial component is rather

great in the vicinity of the disc. This behaviour may necessitate
replacing the approximations [1. by more rigorous expressions
taking into account the non-unilorm loading of the disc.

The factor gt depends on contraction and is assumed to be zero for
the present. This assumption will be corrected on page/a..,
CORRECTIONS FROM THE WAKE DIFFERENCE AND FROM THE RACE CONTRACTION.

The average factor ft follows from Stokes' law. If (zr )
represents the total bound circulation of one of the propellers,
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this law yield3 the resuitt

2 rlr(2wt s ) f t 2 r7T(cw-) z P

from which it follows that

[2) f -
ft

Wt s 4 r 71(Wts)

The average factor of the axial compon~ent, viz.,

fa = (-s)
(was)

is not yet reliably known. Work for its determination has
been initiated on a basis of the Biot-Savart integral for semi-
infinite helical vortex lines. V'e put tentatively until accurate
results are available:

f3J fa - ft

From these relations, it follows that tt. pitches of the free
vortex sheets are slightly different for 4be front and rear
propeller. To simplify, vortex sheets of qual shape are assumed
the pitch of which may be taken as the mea. vslue of (tani)land
(tandi )2.

A further simplification arises from the requirement that the
torque of the front propeller equals that of the rear propeller.
From the law of moment of momentum this condition ia satisfied
if

[43 (zT) 1  (zr )2  (zr)

The assumption involved, viz., that the propellers have equal
diameters will be removed in CORRECTIONS FROM THE WAKE DIFFERENOE
AND FROM THE RACE CONTRACTION on page 12 * The bound circulatioi,s
of the two propellers being equal functions of x, the circulation:
of the free vortex sheets are also equal. Since the slight
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difference between the pitch of these sheets is disregarded,
the respective components of thle induced velocities become equal.
That is

(Was)l (Was)2 W a

(wts)l (Wts)2 wt

With these simplifications, the following expressions for the

components of the relative velocity are obtained -

for the front screw4

axial = v + Wa [1 + fa (1 - ga)]

[5] tangential w(Ar - wt

and for the rear screw:

axial = v + wa [1 * fa (1 t ga)]

tangential =6r - wt ( 1 - 2 ft)

Introducing a non-dimensional circulation, viz.,

[6 G

7 TD v s

the thrust coefficient and the power input coefficient of the
contra-rotating propeller are obtained from the law of Kutta-
Joukowsky as follows:

1[7] C 8 G[ - w (I - ft) d x

£~ f of _

Xh

[8] C 8 G (- w) w(1 f fa)xdx1

Xh
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The loading coefficients so ascertained are slightly different
from the givea values cT or c .respectively, from reasons which
are discussed in CORRECTIONS FROM THE WAKE DIFFERENCE AND FROM THE
RACE CONTRACTION on page 12. Within these express4 ons, the average
factcrs are determined from the relation

ft G i f
t 2 x wt

vs

Further, the self induced velocities wa and wt are related to G by
the following expressions:

a
Wa 1 dG 1I_ _ 1 a

2 Xh d x-x 0  z(l-xh) m=l

[10 wt 1 dG 1 it dx 1 ; *

Vs 2z ( dxo X z(1-xh)

Xh

The functions ia and i are the induction factors of the free
vortex sheets as defintd in (4). The functions hm enter when the
integral on the right hand side, which is an improper integral, is
evaluated. These functions are related to the induction factirs,
the relations having been developed in (4).. By the factors Gm,
the coefficients of G are denoted when G is represented by a
Fourier sine series within the interval x V xli and x - 1.

CRITERION FOR CONTRA-ROTATING PROPELLERS OF MINIMUM LOSS OF
KINETIC ENERGY

The equations [0to [10] together with an assumption on the
thrust deduction factor suffice to treat the variational problem
of a contra-rotating propeller operating in a given wake field,
viz., to determine the coefficients of the Fourier series for
G(x) such that the useful work becomes a maximum value for a given
power input. However, this problem of determining the optimum
circulation function in a direct way is laborious for a finite
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number of blades and is not solved he.e. Instead, a relation
betweene and 4 is deduced for optimum flow from which the
circilati~n function follows afterwards.

From considerations on moderately loaded single propellers,
it i3 known that the form of the optimum relation between,,df and
4 is independent of the number of blades. This enables us

to consider propellers with infinitely many blades by which the
deduction of the relation is greatly simplified. We apply the
rule that the elementary propulsive coefficient which is related
to an increment of circulation is independent of the radius for
optimum flow, see (4). If the increments of the forces which
arise from the increment of circulation, /(z), are denoted by a(d,1)
and L(dQ), respectively, the rule reads:

A(fT) v 1 - t (x) = k2

A(dQ) or 1 - w(x)

the constant k being independent of the radius x.

To establish A(dT) and A (dq) we write from the law of Kutta-
Joukowsky for infinitely many blades, i.e., for fa = ft = 1:

dT 0 dT I + dT2 = 2(z1)fejr jr

dQ a dQ1 + dQ2 = 2(zr) p (v + 2 wa) dr

It follows that

A(dT) 2p4)r A(zr) dr

and that

2pI [(v+ 2 wa) + (z-P\2 Awa j ,(P) dr

A relation between wa and (z.h is obtained from the law of momentum.
Neglecting terms of second power of wa this relation reads:

Wa t /LW (zr) (1 - t)
v 4rJ-A



Then,

Q 2jp(v 4 Wa) A Cz) dr

and the optimum condition becomes

61 r v =K2  1 - w(x)

v + 4 wa Or 1 - t(x)

Since f.he axial velocity in the slipstream far aft equals

Sv" = v s (1 - w) + 4 wa

the condition means that

If the change of t(x) over the radius is considered small so that
t(x) . to, the condition requires that the axial velocity within
tht qlipstream far aft is independent of the radius for infinitely
nmny blades. These relations are approximations which include
assumption 1, viz., that the change of the wake in the axial
direction may be neglected.

To express the minimum condition by the pitch of the free vortex
sheets we consider the average of the pitches of the two sheets.
To the first order, this average for infinitely many blades
amounts to

tani v+ wa

rr

Since, to the first order

6 r W I r Wa ) v_
7 '~ 

av + 4 aa  -v +2 wa r

the opcimum condition may be written as

[11] tan i tan /1 - t(x) 2 p(x)
S1 -w(x) k
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That Is, the meanL pitch of the vortex sheets of a contra-
rotating propeller follows to the first order the same law ir
the optimum case as established previously for a single wake
adapted optimum propeller, see (5). However, the optimum
cLrculation function of the contra-rotating propeller differs
from that of a single wake adapted propeller as seen from the
following section.

DETERMINATION OF THE CIRCULATION FUNCTION FOR OPTIMUM FLOW

Analogous to single propellers, the optimum relation as
expressed by II1] is considered independent of the number of
blades. Then, the optimum circulation function G(x) is obtained
for a finite number of blades when equating two expressions for
tan 1 viz., the minimum condition [11) and the geometric relation;

V

tan v + wa (1 fa) - or wt(l - ft)

&,r - 2 wt (1 - ft)

This latter expression is a first order approximation for the
mean value of (tanA4)l and (tan/i)2 for a finite number of blades
which follows from L6 .
Introducing [9] for the average factors and equating, the relation

[(i - w) - x p(x) G W + S (1 w) -2 p(x)
L( s kI 2  x Lwt x ki

wt  A s wa,

- t (1 - w)- 2

is obtained within which

p(x) = tan- 7 . As 4(1-w)(1-t)
1 w(x) x

is considered a known function of the radius.

Expressing wa and w by the integral representation of [10] an
integro-differentia equation is deduced for G. An approximate
solution of this equation becomes possible when utilizing the sums
of (101 for wa and wt. This leads to..the following*system of
algebraic equations for the Fourier coefficients Gm of G:



1A ~ LX G M(MX X)

whe re

Lx lXh) [(1 w) -x p W

Nm,x (1 - Xh) sin m w t ( Lx P (x

2 Wi ixs h k

This relation is satisfied at m stations x in order to obtain
m equations for m coefficients of the Fourier series:

[13] G= - G* sin mfm~ol m

where

x ( Xh)- 1 (1 - xh) cos %)~2

On the right hand side of [12], the ratio Wa/Wt is not
expressed by the sums of equation [10]. The reason is to avoid
the nume-ical solution of' non-linear equations for the
coefficients Go This can be done when introducing for wa/wt
as a first approximation the relation -'

Wa 1l k ,Tittanel p(x)

ioeo, assuming the condition of normality to be satisfied.
This approximation may be corrected by successive solutions
of the system [12J o

It should be mentioned that the essential difference between a
contra-rotating and a single wake-adapted optimurr pripeller,
which is treated in (4), lies in the equations for G . These
equations are non-lincar for the former and linear fRr the latter.
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CORRECTIONS FROM THE WAKE DIFFERENCE AND FROM THE RACE CONTRACTION

So far., the finite distance of the propellers has been taken
Into accounI., by the distance factor ge The possible difference
between the wakes at the positions of the propellers has been
neglected and the radius of the streamlines has been assumed to be
constant, Both the wake difference and the finite distance
necessitate satisfying the equation of continuity within the spacze
between the propellers. Corrections on the induced velocity
components ensue and the diameters can no longer be assumed equal.
With different diameters, slight changes of the bound circulation
become necessary in order to maintain the condition of an equal
torque for each propeller. We introduce the wake factor w I in the
plane of the front propeller and the factor w2 in that of the
rear propeller so that

v, V (1 - w)

v2 :v s (1 - w2 )

We assume that the wake does not change on the front propeller,i.e.,
that the wake factor wl is identical with the quantity w used in the
foregoing considerations, Then, the results for both the self
induced velocities from (I0) and for G from [12] hold for the front
propelle. since it will be seen that the slight change of the
pitch of the free vortex sheets which ensues on the front propeller
from the changes on the rear propeller may be neglected.
Correspondingly, the index I is attached to these quantities and
the non-dimensional circulation GI is defined by

[14] GI (Zr )lG
-VT D 1 v s

The equation of continuity requires the race to contract. A
streamline which passes through equal radii on both propellers
when ignoring contraction will now pass through the radius r2 at
the rear propeller. We write

[15] r 2 - rl(l -X)

and consider both Jand df small quantiticso The so related
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radii are denoted "corresponding" radii.

The question arises how both the self induced velocities and the
interference velocities, as determined from [i0] Lnd[5J on a basis
of an equal wae wl, change when the wake at the rear prcpeller is
different from wI . The significant changes occur at the rear
propeller. Relative to its self induction this problem is
essentially that of a change of the induced velocity components
when propelleis of slightly different values of diameter, bound
circulation and pitch of the free vortex sheets are considered.
Let the bound circulation be (zl')l and (z1) on corresponding radii
of the front and rear propeller, respectively. We write

[16] (z'), = (zT) (i +,e)

Both.'and d ? are small quantities. From the integral representation
drl

oflO it follows for the axially self induced component at the rear
propeller, e.g., that

R2

(W )= _1L ( d [zr2 (r2 ] ('a)2 d(ro)2¢as)2 2- dr r2- ¢ro )2

rh

_ l+X L (l+1)+ d a)(+Ia'A a

r 
h

_(.°) 
d(r )l

r - (to) 1

if \(r I ) in [15] may be replaced by its mean value Then

,A(0= 0. Further, the induction factors do not change
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appreciablr when the pitch of the fre- vortex sheets changes
slightly so that the ter" conta .ning kia)l may be neglected.

In addition, the product d 4 '(zT) 1 is small of second order since
dr I

both d4 - and (zT)1  are small, the latter because of moderate

dr'I
loading. Ifdis replaced by its mean valueie the self induced
velocities at the radius r2 of the rear screw are approximately
related to those at the corresponding radius of the front screw by

(was )2 71 (1 + T) (l %' (was )l

(wts)2 T (1 +7) f ) (ts)

From these equations, the afore mentioned slight change of the
pitch of the free vortex sheets on the front propeller follows.
The reason for the change is that the interference from the roar
propeller is different when the self induced velocities of the
latter are different. However, this effect may be neglected
because of the negligible variation of tbe iduction factors
which is involved so that the result from [lO1 obtained with
w, = w is sufficiently accurate for the self induction on the front
propeller.

To deterrine the interference velocities from the expressions for
the self induced velocities the changes of th- factors f and g must
be known. The change of the average factor f on the rear propeller
arises from the changes of the circulation of the radius and of the
self induced velocity. It follows from [2] , however, that the
resultant change of f is small of second order so chat

ft (r2 ) ft (r1 )

fa (r 2 )  
@- f, (rl)

The change of the distance factors ga and g arises from the
contraction of the slipstream. For the fa~tor ga, the effect .s
included in equations [l since these equations represent the
rigorous solution for the inflow to the sink disc. For the front
screw, ga is determined at the radius rI and for the rear screw at
the radius r2 , However, the accuracy of these equations is less for
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the flow buhind a propeller than in front because of the assumed
symmetry of the gradient of the axially induced flow. Because of
this, the approximation

ga%-r2) g (rj)

is considered to be in accora with the applicability of equations [W.

The effect of contraction on the factor g is established from
the law that the circulation remains unaltered 8n a contracting
streamline.

The components of the interference induction are then related
to the self induction as follows:

(Wail (Wa- (1 - ga)

(wti)l 0

ai)2 as 1 a

(w ti)2  2 (wts (1 f &)

From these expressions for the self and interference induction the
components of the relative velocity follow at corresponding radii.
One obtains

for the front screw (radius r1)

axial = vI + (Was)I * (Wai) I

= VS (I-wl)+(Was)l [1 fal + z)(.) (1 - ga)]

= vs Al

tangential r, - (Wts)1

for the rear screw (radius r2 corresponding to r1 )

axial w v2 + (was)2 + (wai)2
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-Vs(1-w a)+(Was) 1 [(I , (I + +) fa (I + ga)]

vs A2

tangential 6Jr2 - (wts)2 + (wti)2

IdrI (1 4) - (w)ts)1(1 * (1 +1) - 2 f,(1 +S) ]
where (was) 1 and (wts) are the result from L101 with w 0 w I and r rl.

The contraction (f(r ) is ascertained from the equation of
continuity which reads ior an annular element as follows:

v l + (7sa)l + (Wa)l] rldrl 12v2 + ( +as)2 j (wai)2 ] r2dr

Introducing the expression [15J and the relations for (was) and (wai)

a first order linear differential equation for S is obtained when
neglecting terms which are small of second order° Determin~ig the
constant of integration such that 6= 0 for x I = (x h) the solution
is represented by the following integral:

(l )+(was)l f

[18] (WW 2) + a ga[2 + (6 t 4) dxl
(w(Xn21  ) vO + (was fa [2 + g, a

It remains to establish a relation for the function 4(r) which

follows from the condition of an equal torque for each W opeller.
From the law of Kutta-Joukowsky the balance requires that

A2 1 -S
1x
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This equation is in accord with the law of moment of momentum which
necessitates that 4% 0 if the propellers are very close together ,

ie.,, if bothS : 0 and ga = 0

The functions S aid Zare interrelated within 18] and[19]. These
equations may be solved in successive steps assuming in the first
step 4f, ; and Zto be zero. The solutions for 4(xl) ind 4 (xl) so
obtained lead to first approximations for land 4'with which
improved values of C(xl) and 1(Xl) follow.

With ( being known the change of the diameter may be determined which

is required by the equation of continuity. This equation is satisfied
if

[20] D2 /1 l -) 1

Finally, the alteration of the total thrust may be ascertained which
ensues from the changes under consideration. Between the thrust
coefficient cT as follows from [7] and the coefficient CT obtained

frof the law of Kutta-Joukowsky when introducing equations [151 to
[17J the approximation

[21] cT ZC*

holds.

DESIGN PROCEDURE

From the developed relations, a design may proceed in the
following way considering the total thrust a given quantity which
is denoted cTo The first step is to solve the algebraic equations

[12] for the coefficients G* assuming several values of the constant

k and to determine k such tat the thrust coefficient 4 is obtained
from [7] . The quantity c in[I] is relatedto the required quantity

by 21]. Since both I and -are unknown when beginning the

calculation an estimate is necessary to determine * A slight
increase of CT will usually be sufficient to satisfy2
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The constant k is approximately ascertained by the
following relation, see (5)?

k (PC)

so that ) I - W(Xl)
11n k i 1- wo0

These relations make it possible to approximately determine k
and tan,4i from estimated values of bothothe propulsion

coefficient end to. The assumption t(x) t made in the

expression for tan/i can be improved utilizing results of (6).

However, the influence of this assumption on the coefficients Gm
is small.

With this first qpproximation for tan di the functions i and

h are established in a way which is analogous to that shown in (4)
fBr a single propeller. Next, the equations [12) are solved and

the cIrculation function G(x), which is identical with GI(xl), is
calculated from [13]. The omponents of the self inducea velocity
follow from the sums of ElOJ. The average factors are then known
from [9] and the thrust loading coefficient from [7]. If the

difference between the required and the calculatea value for c' is
appreciable the calculations are repeated using a slightly difrerent
value for k, *

After sufficient agreement between the two values for cT is

obtained both the contractioncand the functionCare found

from [11 and [19) The diameter D follows from [20] , Dl being

assumed from the beginning. The pidches and the products (c-1) are

then ascertained from the followino relations which hold at the

radii x1 r1  RI and x2 = r2 R2 'l-.x1 -4 respectively:

(t)a vl +(was)i + (Wai)] A1

a rI - (wts)l Xi - (wts)I

AS Vs
v2 + (was)2 + (Wal)2

(tani)2 w
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A2

I __ (I , )Xl~l2 (wts)l ( ) ( ) -2 f I
AS Vs

whe re

p i"/ l =77xltan (/ I oIf ()
'; P D1 = 7,ex I tan (i$I

D2  7f 2 tan 9toe2

(c L) I 1-= 2 77 GI (sin il

Dl z A1

(OLI)2 =271GI  (1 4-4) (sin/i) 2

D2 Z A2

The design may be checked by means of the following expressions
which hold for viscous flow:

(CT)i =  Tvisc_ 2z B I + ( l B2

1 - v2 R 2

where B V 's V (cos/)(I-C tan(1i) (dx)

Dl vs)

and (V/vs) (A/sin/,)
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using incices 1 or 2 on the terms In L:-ackets to )btaia B1 or B2
respectively.

(CP)ic Pvisc 2 z 1 [CI + (i 21)= C2]

C ( (v) 2  (sin/i) (1t__ (xdx)

(xh)

The former equation may be used to check whether the rumerical
value for the ratio CT/(cT)visc is reasonably assumed when starting
t. computations. The latter relation gives an estimate of the power
input and, considering the integrals separately, can also be used to
check whether the balance of torque is maintained in viscous flow.
As in the design of single propellers, corrections on the sections
for lifting surface effectq (additional camber and additional angle
of attack) and for viscous flow (additional angle of attack) are
introduced when determining pitch and camber. Also, the effect of
the hub on the induced velocity may be estimated as outlined in (4).

OPTIMUM CIRCULATION FUNCTION FOR UNIFORM INFLOW AND COMPARISON
WITH THEODORSEN's RESULTS

For uniform inflow, ioe., for

w = 0, t 0, p(x)
x

the minimum condition Ell] reduces to

"d k x

That is, the mean pitch of the vcrtex sheets forms a true helieal
surface. Consequentl , the condition of normality is satisfied so
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that the relation

WaW~-a=k x
Wt I

holds in this case, Then, the equations t123 for the optimum
circulation are simplified to the following linear system assuming

XhT! 0
L =--G m (M, + N~x

m=1 m mx m'x

where

L 1 -  )

M m, =- 2 -- (h h

This system is solved numerically for the arbitrary values
z = 4,P= 0.80, A i = 0.94. The result obtained is compared with

that determined by Theodorsen for hubless propellers by means of
an electrical analogy which is based on the fact that a velocity
potential may be reproduced by an electrical potential provided
that the boundary conditions are identical (1).

The following solution of the set of equations is obtained:

G .11907 4 =.00024

G" .00844 = .00005
2 5 000

G * .00417

The ensuing circulation distribution G is represented on
Figure 3. As compared to the circulation following from
Theodorsen's work, differences arise near xwO where G goes to zero



22

whereas Theodorsen's function remrins finite. This difference
arises from the representation of G by a Fourier sine series which
is not suited to represent the optimum circulation of a hubless
contra-rotating propeller close to the axis. However, for the
essential part of the blade, between x about O and 1, the
agreement is considered satisfactory. This result indicates that
the optimum circulatiorL of a contra-rotating propeller with a
finite hub is sufficiently represented by the series chosen for G
also close to the hub.
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